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EQUATIONS OF STATE OF SOLIDS

where 5o and g correspond to temperature 7' and
pressure zero, and K is the bulk modulus at tempera-
ture T and at zero pressure.

Accordingly, Eqs. (27) and (32) yield for Eq. (1)
the generalization

Ko

T
EXP[— f noaodT]
n—1m To
VO T n
(L [ au)
(G

V(! T - m
—-(—exp aodT) ], (33)
14 To
which exhibits the temperature dependence explicitly

and reduces to Eq. (1) when the exponentials appearing
are set equal to unity. This equation yields

(aP/aT)V=Kao—P'qoao=Ka(T) (34)

directly, which shows that ao(7) must be taken as
strictly independent of pressure; the pressure depend-
ence of the thermal expansion demanded by Eq. (25)
is taken into account by the exponential in P which
involves noa. One concludes from Eq. (26) that the
generalization (33) yields correctly the temperature
dependence of the pressure through terms of first
order in P/K as a parameter of smallness, but, from
Eq. (31), that the temperature dependence of the bulk
modulus is given correctly only to zero order in this

- parameter. Note that the role of the exponential

involving neao in Eq. (33) is to ensure that Eq. (17)
be fulfilled at nonvanishing pressure; if this exponential
be set equal to unity while the exponential involving
only ao be retained, Eq. (17) is met only to zero order
in the parameter P/K. Finally, the physical interpreta-
tions of the parameters U and X can be noted. From
Eq. (27) and the definition of ay, it follows that V(T)
is simply the volume of the solid at temperature T
and at zero pressure. Equations (20) and (21) yield

na=—K(3dK/oT)p, (35)

and hence &(T) of Eq. (32) is the bulk modulus of
the solid at temperature 7" and at zero pressure.

To this point, it has been assumed tacitly that
states of the solid at zero pressure are observable at

| arbitrary temperature, since the coefficient ay of volume

expansion must be determined experimentally. This
condition is not met for a solid with a normal fusion
curve, when the temperature exceeds the normal
melting temperature. In this case, Birch’s relation
(25) must be replaced by

a=an{l=na[(P/K)— (Pu/Kx)1},  (36)

where Pn(T) is the pressure, Kn(T) is the bulk
modulus, and an(7) and nm(T) represent values of
« and 1, respectively, all of which are measured for the
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solid on the fusion curve at a given temperature T
(and thus can be regarded as functions only of tempera-
ture). With this value of @, Egs. (24) and (28) yield

T P, )
V=V pmoexp (l-i—nm—)ade, (37a)
Tm, 0 Km
T P,
K=Kmo exp[— (1-{-17,,.——)1),,,&,,.(17‘], (37b)
Tm, 0 Km

respectively, where Vmo and Km0 are the values of
¥ and K, respectively, for the solid at the temperature
Tmo for fusion under zero pressure; the paths of
integration are along the fusion curve. The correspond-
ing generalized equation of state is to be applied only
for P(T)>Pn(T). These forms for U and X can be
reduced to those of Eqs. (27) and (32) by writing

ao=am(1+77um/Km), 0= MNm, (38)

from Eq. (36), so that ao(7) is the hypothetical value
of « possessed by the solid if metastable below its
fusion temperature at P=0. Substituting into Egs.
(37) the values of am and 9, implied by Egs. (38),
one can write

T
V="V pm,o0exp aodT, (39a)
Tm,0
T
K=Kamo exp[ - f noaodT], (39b)
Tm, 0

where the paths of integration correspond to zero
pressure. Hence, U and & retain their physical interpre-
tations as the volume and bulk modulus, respectively,
of the solid at zero pressure for temperature 7.

In the preceding, the parameters U and X have been
written in exponential form for mathematical con-
venience. Only rarely does the accuracy with which
ao and 7o are experimentally known justify retention
of terms beyond the first in the expansion of the
exponential. To first order, P(T) of Eq. (33) can be
written as the sum of a temperature-dependent correc-
tion and the pressure P(7,) corresponding to the
isothermal equation as

K,
P=P(To)+ [nyr—my™—no(y"—y™)]
n—m r
X { adT, (40)
To

where y="V¢/V (7o has been taken as a constant). At
nonvanishing pressure, the first two terms in the
brackets in this equation are dominant over the terms
in parentheses with 7o as coefficient, since the latter
terms cancel for V=V,. The relative smallness of the
terms involving 7o is advantageous, since this param-
eter is difficult to determine experimentally and




